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Abstract
We re-examine the spin-glass (SG) phase transition of the ±J Heisenberg
models with and without random anisotropy D in three dimensions (d = 3)

using two complementary methods, i.e., (i) the defect energy method and (ii)
the Monte Carlo method. We reveal that the conventional defect energy method
is not convincing and propose a new method which considers the stiffness of
the lattice itself. Using the method, we show that the stiffness exponent θ has
a positive value (θ > 0) even when D = 0. Considering the stiffness at finite
temperatures, we obtain the SG phase transition temperature of TSG ∼ 0.19J for
D = 0. On the other hand, a large scale MC simulation shows that, in contrast
to the previous results, a scaling plot of the SG susceptibility χSG for D = 0 is
obtained using almost the same transition temperature of TSG ∼ 0.18J . Hence
we believe that the SG phase transition occurs in the Heisenberg SG model in
d = 3.

PACS numbers: 75.50.Lk, 02.70.Lq, 05.50.+q

1. Introduction

For a long time, it has been believed that the spin-glass (SG) phase is realized in three
dimensions (d = 3) for the Ising model [1, 2] but not for the XY and Heisenberg models
[3–7]. Thus, the SG phases observed in experiments were suggested to be realized due to
anisotropy [8, 9]. However, numerical studies in the last decade have revealed that the SG
phase might be more stable than has been believed so far. In a long-range Ruderman–Kittel–
Kasuya–Yoshida (RKKY) model, it was shown that the SG susceptibility exhibits a divergent
singularity at a finite temperature, even when the anisotropy is absent [10, 11]. This behaviour
has been attributed to the randomness of the spin position (site random model) rather than the
long-range nature of the RKKY interaction. In fact, a short-range site random model composed
of ferromagnetic spins and antiferromagnetic spins was shown to exhibit a long-range order
phase characterized by the coexistence of a ferromagnetic and an antiferromagnetic order [12].
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On the other hand, for the XY and Heisenberg bond SG models, Kawamura and his co-workers
took note of the chiralities of the spins and showed that a chiral glass (CG) phase transition
occurs at a finite temperature TCG �= 0, but the spin-glass phase is still absent [13–15]. They
insisted that an anisotropy mixes the chiral freedom and the spin freedom and the SG phase
transition occurs at TSG (= TCG). This view of the SG phase transition is quite attractive,
because it gives a novel picture of the SG phase. That is, in the picture, the CG phase realizes
in the real world, not the SG phase. However, their bases for the absence of the SG phase are
obscure. Moreover, since the chirality is described by the spin variables, then the origin of the
CG phase transition might be the usual SG phase transition. In fact, recent studies of the ageing
effects of the spin and the chirality autocorrelation functions [16] and the developments of the
SG and the CG susceptibilities [17] by means of a nonequilibrium relaxation method suggested
that, if the CG phase transition occurs, the SG phase transition occurs at the same transition
temperature TSG = TCG. Quite recently, Lee and Young presented the same conclusion using
a finite-size analysis of the correlation length of the spins and chiralities [18].

During the last decade, new algorithms for simulating complex systems have been
developed and available computer power has increased enormously. It is therefore possible
to re-examine in detail the SG phase transition of the Heisenberg model on the basis of the
usual analyses. Here we consider Heisenberg models with and without random anisotropy on
a simple cubic lattice described by

H = −
∑
〈ij〉

[
JijSiSj +

∑
α �=β

D
αβ

ij Sα
i S

β

j

]
(1)

where Si is the Heisenberg spin of |Si | = 1 and Sα
i is its α-component (α = x, y, z), and 〈ij 〉

runs over all nearest-neighbour pairs. The exchange interaction Jij takes on either +J or −J

with the same probability of 1
2 . We assume that the anisotropy comes from pseudo-dipolar

couplings and impose the restriction D
αβ

ij = D
αβ

ji = D
βα

ij . We further assume that D
αβ

ij are
uniform random values between −D and D.

Evidence for the absence of the SG phase in the Heisenberg SG model which has been
believed so far is given by the following two points.

(i) Negative stiffness exponent θ at T = 0 [3, 4, 13].
(ii) Scaling plots of the SG susceptibility χSG and absence of the crossing of the Binder ratio

gL [5, 19].

Then we re-examine these two points to consider the possibility of the SG phase transition
of the Heisenberg SG model. We will consider stiffness exponent θ at T = 0 and T �= 0 in
section 2, and properties of χSG and gL in section 3. We will give special attention to the effect
of the anisotropy, because it has been believed that the anisotropy brings about the SG phase
transition. So if it is true, we will find different properties between models with and without
anisotropy.

2. Stiffness exponent θ

The most accepted evidence for the absence of the SG phase is the results of the defect energy
method. So we first consider the defect energy method.

2.1. Conventional defect energy method

The defect energy method comes from an application of a renormalization-group idea
[3, 4, 20]. That is, one evaluates the effective coupling J̃L between block spins of the
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Figure 1. The lattice size dependence of the naive defect energy [|�EL|] of the Heisenberg SG
model in d = 3.

linear dimension L generated by the renormalization. The effective coupling J̃L would
depend on L as J̃L ∼ JLθ with θ being called the stiffness exponent. When θ > 0, the
SG phase transition occurs at a finite temperature, while no phase transition occurs at any
finite temperature when θ < 0. To estimate J̃L, one considers the domain-wall energy �EL

which is defined as the difference in the ground-state energy of two lattices A and B of size
L × L × L with the same bond distribution but with different boundary conditions. That is,
for lattice A, a periodic boundary condition is applied for every direction, and, for lattice B,
an antiperiodic boundary condition is applied for one direction and the periodic boundary
condition for the other directions. By using this method, Banavar and Cieplak first estimated
the value of θ ∼ −1 and predicted that the SG phase transition occurs at T = 0 [3]. Successive
studies also predicted negative values for θ , i.e., θ ∼ −0.65 [4] and θ ∼ −0.49 [13].

Recently, however, a doubt was thrown on the estimation of J̃L [21, 22]. That is, in the
calculation of �EL, one expects that no domain wall exists in the lattice A (or B) and hence
one domain wall arises in the lattice B (or A). This expectation might be true, but another
possibility would be equally true. That is, some domain wall will occur in the lattice A and
some different domain wall in the lattice B. Then one might examine merely the difference
in energy between those two domain walls. Does this defect energy �EL really give the
effective coupling J̃L between the block spins? So we first examine �EL of the model with
and without random anisotropy. We calculate �EL for lattices of L � 9, and for each L, the
sample averages are taken over about 4000 independent bond realizations. Results of [|�EL|]
are presented in figure 1 in log–log form, where [· · ·] means the sample average. Data for
D = 0 are curved. The most surprising thing is that this L-dependence of [|�EL|] is similar to
those in the case of D �= 0. These results suggest two possibilities. One is that the finite-size
effect is so large that the asymptotic region has not yet been reached. Since the curvature is
upwards, it is possible that θ ∼ 0 or even θ > 0 in the limit of L → ∞. The other is the
inadequateness of estimating the defect energy as pointed out above. In order to examine the
latter possibility, we study this problem in a different method.

2.2. Stiffness of the system

Apart from the renormalization-group concept, we consider the stability of the spin
configuration of the system itself [21, 23]. The strategy of our examination is as follows
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[21, 24, 25, 27]. We prepare a cubic lattice of L × L × (L + 1) with an open boundary
condition in one direction of (L + 1) lattice sites (z-direction) and the periodic boundary
condition in the other directions. That is, the lattice has two surfaces �1 and �L+1. We call
this system the reference system. First we determine the ground-state spin configuration of the
reference system. Hereafter, the ground-state spin configurations on �1 and �L+1 are denoted
as

{
Si

(1)
}

and
{
Si

(L+1)
}
, respectively. In this spin configuration, any distortion (domain wall)

in the z-direction will be removed, because the lattice has free surfaces �1 and �L+1. Then
we add a distortion inside the system in such a manner that

{
Si

(1)
}

are fixed and
{
Si

(L+1)
}

are
changed under the condition that the relative angles between the spins are fixed. The ground-
state energy of this system is always higher than that of the reference system. When D = 0,
this excess energy is the net energy added inside the reference system, because the surface
energy of �L+1, which is given as the sum of the exchange energies between the spins on
�L+1, is conserved. We consider the stability of the system on the basis of this excess energy.
One might think that the fixing of the relative spin directions on �1 and �L+1 overestimates
the stability of the spin configuration. We think, however, that this restriction is not serious
for discussing the stability, because the increase of the excess energy to infinity for L → ∞
means nothing but the existence of a strong correlation between the spin configurations on �1

and �L+1. In fact, the same method was successfully applied to the Ising SG model in d = 2
[21, 25].

We calculate two kinds of excess energies. One is the excess energy which is gained by
rotating

{
Si

(L+1)
}

by the same angle φ around some common axis (z-axis) and the other is the
excess energy which is gained by reversing

{
Si

(L+1)
}
. Hereafter, we call the former system

the rotated system and the latter system the reversed system. We think that it is sufficient
to examine these two excess energies for considering the stiffness, because we can change{
Si

(L+1)
}

into any direction by combining the rotation and the reversal. The excess energy for
the rotation �Erot(φ) and that for the reversion �Erev is given as

�Erot(φ) = Erot(φ) − EG (2)

�Erev = Erev − EG (3)

where EG is the ground-state energy of the reference system, and Erot(φ) and Erev are the
ground-state energies of the rotated system and reversed system, respectively. The lattice sizes
studied here are L = 3–8 and, for each L, the sample averages are taken over about 1000
independent bond realizations.

In figure 2, we present the L-dependence of [�Erot(π/2)]. Here we show data only for
D = 0, because in the case of D �= 0 we could hardly evaluate the net excess energy of
[�Erot(π/2)].3 We clearly see that the data increase with L. From the slope of the asymptotic
line shown in the figure, we tentatively determine the value of the stiffness exponent as
θrot ∼ 0.62. That is, the SG phase would not be destroyed by a rotational perturbation.

In figure 3, we present L-dependences of [�Erev] for both D = 0 and D �= 0. Data
depend little on the value D. For each D, they seem to lie on a curve with a common positive
slope of θrev ∼ 0.4. Again, we get the view that the SG phase is stable at T �= 0 for both
D �= 0 and D = 0.

Our results suggest θrev, θrot > 0 for both D = 0 and D �= 0. However, their values are
somewhat different from each other. It should be pointed out, however, that these values of
θrev and θrot may vary for L → ∞, because in the lattice size range studied here [�Erot(π/2)]
is smaller than [�Erev] and the former increases more rapidly than the latter (θrot > θrev),

3 When D �= 0, the uniform rotation of {Si
L+1} gives an additional excess energy of the surface �L+1.
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Figure 2. The lattice size dependence of the excess energy [�Erot(π/2)] of the Heisenberg SG
model in d = 3.
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Figure 3. The lattice size dependence of the excess energy [�Erev] of the Heisenberg SG model
in d = 3.

then as L increases further they would come close to each other. The convincing values of
θrot and θrev would be given in that range of L. Unfortunately, the lattice sizes are still too
small to examine this speculation. Anyway, both the analyses of [�Erot(π/2)] and [�Erev]
suggest that the system tends to be rigid as the size of the lattice becomes larger. Note that we
have also calculated the defect energies of the system for D = 0 using two replica boundary
conditions [26] and found that they also increase with similar, positive slopes of θ

(rep)
rot ∼ 0.59

and θ
(rep)
rev ∼ 0.46 for the π rotation around the z-axis and the reversion, respectively [27].

Hence, we conclude that the defect energy method never gives evidence of the phase transition
at TSG = 0.

What is the SG phase transition temperature TSG? We may estimate TSG by calculating
the excess free energy [�Frot(T )] and [�Frev(T )] [28] at finite temperatures. In fact, we have
also calculated these quantities for D = 0 [27]. The result of [�Frev(T )] is shown in figure 4.
It is seen that, at high temperatures, [�Frev(T )] decreases with increasing L, whereas at low
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Figure 4. The lattice size dependence of the excess free energy [�Frev(T )] of the Heisenberg SG
model for D = 0 in d = 3 [27]. Data at T = 0 are [�Erev] presented in figure 3.
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Figure 5. Temperature dependences of the spin-glass susceptibility χSG of the ±J Heisenberg
model in d = 3 for different sizes of the lattice at D = 0.

temperatures it increases with L. One estimates the phase transition temperature from the
crossing temperature of the free energies for various lattice sizes L. In the present model,
the crossing temperature TL for the lattice sizes L and L + 1 shifts systematically to the low
temperature side with increasing L. Then, we assumed that TL decreases linearly with 1/L,
and estimated TL for L → ∞ as T∞/J = 0.188 ± 0.015. Note that the same extrapolation
for [�Frot(T )] gave T∞/J = 0.192±0.015. Therefore we may conclude that, if the SG phase
transition occurs, the transition temperature is TSG ∼ 0.19J .

3. Monte Carlo simulation

Now we re-examine the SG phase transition itself. Here we consider the model on a simple
cubic lattice of L × L × (L + 1)(≡ N) with skew boundary conditions along two L directions
and a periodic boundary condition along the (L + 1) direction. We perform a MC simulation
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Figure 6. Typical examples of the finite-size scaling plot of the SG susceptibility at D = 0 for
(a) TSG �= 0 and (b) TSG = 0.

of the two-replica systems of the spins {Si} and {T i} using an exchange MC algorithm [29].
We calculate the order-parameter probability distribution PL(q) of

PL(q) = [〈δ(q − Q)〉] (4)

where 〈· · ·〉 and [· · ·] mean the thermal average and the bond distribution average, respectively.
Here Q is the spin overlap defined by

Q =
√√√√1

3

∑
α,β

(qαβ)2 (5)

with qαβ ≡ 1
N

∑N
i=1 Sα

i T
β

i . Using PL(q), we obtain two conventional SG quantities, i.e., the
SG susceptibility χSG and the Binder parameter g(L, T ) which are defined by

χSG = 3N [〈q2〉] (6)

g(L, T ) = 1

2

(
11 − 9

[〈q4〉]
[〈q2〉]2

)
(7)
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Figure 7. Temperature dependences of the Binder parameter g(L, T ) of the ±J Heisenberg model
for D = 0 in d = 3 for different sizes of the lattice. The arrow indicates the transition temperature
TSG estimated from the scaling plot of χSG.

where [〈qn〉] = ∫
qnPL(q) dq. We examine the size and temperature dependences of these

quantities both for D = 0 and for D �= 0. The linear sizes of the lattice studied here are
L = 5–19. Equilibration is checked by monitoring the stability of the results against runs at
least twice as long. The numbers of the samples are 480 for L = 5–9, 192 for L = 11, 96 for
L = 15 and 48 for L = 19.

In figure 5, we show results for the SG susceptibility χSG of the model without the
anisotropy (D = 0). As the temperature is decreased, χSG for larger L increases rapidly. If the
lower critical dimension dl is less than the lattice dimension, dl < 3, and the phase transition
really occurs at T = TSG, the data for different L will be scaled as

χSG = L2−ηF (L1/ν(T − TSG)) (8)

where ν is the exponent of the correlation length and η is the exponent which describes the
decay of the correlation function at T = TSG. The scaling plots obtained by assuming TSG �= 0
and TSG = 0 are shown in figure 6. The scaling with TSG �= 0 works better than that with
TSG = 0, even if the data for the smallest size L = 5 are ignored in the latter4. Note that
in the previous scaling analysis [9], TSG = 0 was estimated using the data for the lattice of
L = 7–15. Here, we use the data for a wider temperature range and add the data of the bigger
lattice of L = 19. The phase transition temperature and the values of the critical exponent
estimated here are TSG/J = 0.18 ± 0.01, ν = 0.97 ± 0.05 and η = −0.1 ± 0.1. We should
emphasize that this value of TSG is in good agreement with that estimated from the excess free
energy of TSG/J ∼ 0.19. It is noted, however, that the possibility of TSG = 0 is not ruled out
from the scaling plot of figure 6(b), because in that case the temperature range of T >∼ 0.2J

would be out of a critical region [32]. As the anisotropy is added, the transition temperature
increases with D, i.e., TSG/J = 0.32 ± 0.03 for D = 0.2J , and TSG/J = 0.65 ± 0.05 for
D = 1.0J .

The Binder parameter g(L, T ) is the other quantity for examining the SG phase transition.
It is believed that, if the SG phase transition occurs at TSG, g(L, T ) for different L cross at
TSG. In contrast to our expectation, as shown in figure 7, they neither cross nor come together
at TSG. This result seems to give the opposite view about the SG phase transition. However,
4 In the case of TSG = 0, we have made the scaling plot assuming η to be an adjustable parameter and found that the
quality of the scaling plot is almost the same in the range of −1.0 � η � −0.9.
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Binder parameter g(diag)(L, T ) of the ±J Heisenberg model in d = 3 for different magnitudes of
the anisotropy D and for different sizes of the lattice. Open symbols are for D = 0.2J and closed
ones for D = 1.0J . Arrows indicate the transition temperatures TSG estimated from the scaling
plot of χSG.

the absence of the crossing of g(L, T ) was also seen in the ±J Heisenberg model in four
dimensions (d = 4) [30] in which the SG phase transition is believed to occur at some finite
temperature even when D = 0 [7]. If the absence of the crossing of g(L, T ) for finite L says
nothing about the SG phase transition, the same would be true when the anisotropy is present
(D �= 0). Then, we also calculate the Binder parameter of the model with D �= 0. Here,
since the system for D �= 0 has inversion symmetry, we also consider the spin overlap of the
diagonal components for which, in equation (4),

Qdiag = 1

N

N∑
i=1

SiT i (9)
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arrow indicates the transition temperature TSG estimated from the scaling plot of χSG.

is used instead of Q. Hereafter, we call the SG susceptibility and the Binder parameter
calculated using Qdiag the diagonal SG susceptibility and the diagonal Binder parameter and
denote them as χ(diag) and g(diag)(L, T ), respectively. Results are presented in figures 8(a) and
(b) for g(L, T ) and g(diag)(L, T ), respectively. In fact, g(L, T ) for different L neither cross nor
come together. In contrast, g(L, T ) for larger L exhibit a dip. As D is increased, this property
becomes more prominent. In contrast g(diag)(L, T ) exhibits the usual behaviour. That is, as
the temperature is decreased, g(diag)(L, T ) increases monotonically and its size dependence
reverses. We suggest, hence, that the definition of the Binder parameter in terms of Qdiag is
adequate for examining the phase transition for D �= 0 and its crossing behaviour supports
the presence of the phase transition. It is noted, however, that the crossing temperature seems
to deviate considerably from that estimated above. We think that this deviation comes from a
finite-size effect, because the crossing temperatures for different L exhibit a considerable
L-dependence and, as L increases, it seems to approach TSG. We have also calculated
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g(diag)(L, T ) in the case of D = 0 and found the absence of crossing behaviour. We think
this difference in the behaviour of g(diag)(L, T ) comes from the occurrence of the drift of the
whole system due to the O(3) symmetry for D = 0. In fact, the diagonal SG susceptibility
χ

(diag)

SG for D = 0 has been found to be much smaller than χSG, whereas that for D �= 0 is larger
than χSG.5 We believe, hence, that the absence of the crossing of the usual Binder parameter
g(L, T ) will not imply the absence of the phase transition of this system. We speculate that,
even when D = 0, if the system becomes free from the drift, g(diag)(L, T ) might exhibit a
similar crossing behaviour.

Recently, it was proposed that the quantities A(L, T ) and G(L, T ) that measure the
order-parameter fluctuations (OPF) exhibit crossing behaviour at TSG even if g(L, T ) does not
[31, 33, 34]

A(L, T ) = [〈q2〉2] − [〈q2〉]2

[〈q2〉]2
(10)

G(L, T ) = [〈q2〉2] − [〈q2〉]2

[〈q4〉] − [〈q2〉]2
. (11)

Then we also calculate A(L, T ) and G(L, T ) and examine their L-dependences. In figure 9,
we show G(L, T ) for different L at D = 0 and D = 0.2J . When D = 0,G(L, T ) for
large L (� 9) seem to come together near TSG. This property becomes more prominent in the
anisotropic case of D = 0.2J where the data for smaller L (= 5, 7) join. We have also seen
that A(L, T ) for both D = 0 and D �= 0 show a somewhat different crossing behaviour at a
temperature a little higher than TSG.

4. Conclusion

We have re-examined the spin-glass (SG) phase transition of the ±J Heisenberg models with
and without random anisotropy D in three dimensions (d = 3). Attention has been paid to the
results of (i) the defect energy method and (ii) the Monte Carlo method, because the evidence
of the absence of the SG phase transition at a finite temperature has been given by these two
methods. Our results have been summarized as follows.

(i) The stiffness exponent θ . We have shown that the previous result of θ < 0 is not
convincing for two reasons, i.e., (a) the meaning of the defect energy [|�EL|] in the
conventional method is not clear, and (b) even if the method is meaningful, the plot of
[|�EL|] as a function of L curves considerably. We have proposed a new method which
considers the stiffness of the lattice itself. By using the method, we have shown that
θ > 0 for D �= 0 and the same is true for D = 0. Having considered the stiffness at
finite temperatures, we have obtained the SG phase transition temperature TSG ∼ 0.19J

for D = 0.
(ii) The Monte Carlo method. A large scale simulation has enabled us to make a scaling plot of

the SG susceptibility χSG which suggests the finite transiton temperature of TSG ∼ 0.18J

for D = 0. The quantities G(L, T ) and A(L, T ) that measure the order-parameter
fluctuations have exhibited a merging behaviour near TSG, but the Binder parameter
g(L, T ) has not exhibited the usual crossing behaviour. However, analyses of the model
with D �= 0 have suggested that the absence of the crossing of g(L, T ) will not mean the
absence of the SG order in this model.

5 We have also made a scaling plot of χ
(diag)

SG and found that data are scaled fairly well using a similar transition
temperature for both D = 0 and D �= 0.
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Our results have confirmed that, in contrast to the common belief, the SG phase transition
occurs at a finite temperature. It should be noted that the two different methods have given
almost the same SG transition temperature of TSG ∼ 0.19J . This value of the transition
temperature is very close to that estimated from nonequilibrium properties of the model, i.e.,
TSG ∼ 0.19J from the ageing effect of the spin autocorrelation function [16] and TSG ∼ 0.21J

from the nonequilibrium relaxation method [17]. Quite recently, Lee and Young [18] studied
the Gaussian Heisenberg model, and suggested that TSG/J = 0.16 ± 0.02. This value of the
transition temperature is also reasonably close to our value, considering the difference of the
bond distribution. Hence we conclude that the model exhibits the SG phase transition even
when the anisotropy is absent and its transition temperature is TSG ∼ 0.19J .

We make two comments. One might think that, for a larger D, the Ising values of the
exponents (θ ∼ 0.2 [20], and ν ∼ 2 and η = −0.3 [35]) should be recovered. However, we
consider that this opinion is not necessarily true, because the random anisotropy in the model
of equation (1) is not uniaxial. Of course, we could not rule out the possibility that a finite-size
effect masks true values. The other comment is that the strange behaviour of g(L, T ) of the
Heisenberg SG model will come from the choice of the order parameter. When D �= 0, the
order parameter should be chosen as the sum of the diagonal components of the spin overlap,
because only the inversion symmetry exists. We speculate that the same will be true in the
isotropic case of D = 0, though the O(3) symmetry recovers. To examine this speculation,
we are currently making the simulation removing the uniform rotation of the system [16].
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[23] See e.g., Möller-Hartmann E and Zittartz J 1977 Z. Phys. B 27 261
[24] Matsubara F, Endoh S and Shirakura T 2000 J. Phys. Soc. Japan 69 1927
[25] Shiomi M, Matsubara F and Shirakura T 2000 J. Phys. Soc. Japan 69 2798



Three-dimensional Heisenberg spin-glass models 10893

[26] Ozeki T 1993 J. Phys. Soc. Japan 62 2641
[27] Endoh S, Matsubara F and Shirakura T 2001 J. Phys. Soc. Japan 70 1543
[28] Shinoda H and Ueno Y 1993 J. Phys. Soc. Japan 62 970
[29] Hukushima K and Nemoto K 1996 J. Phys. Soc. Japan 65 1604
[30] Shirakura T and Matsubara F 2003 Phys. Rev. B 67 100405
[31] Hukushima K and Kawamura H 2000 Phys. Rev. E 62 3360
[32] Carter A C, Bray A J and Moore M A 2003 Preprint cond-mat/0302207
[33] Picco M, Ritort F and Sales M 2001 Eur. Phys. J. B 19 565
[34] Marinari E, Naitza C, Picco M, Ritort F and Zuliani F 1998 Phys. Rev. Lett. 81 1698
[35] Ballesteros H G et al 2000 Phys. Rev. B 62 14237


